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Abstract

This thesis explores the use of data mining and machine learning techniques to mark complex

Rust code using software metrics automatically. The methodology proposed involves four

main procedures: dataset construction, feature extraction, model training and finetuning, and

model evaluation. The dataset construction involves the creation of a ground truth dataset by

collecting commit messages and their metadata, performing NLP analysis, and extracting

software metrics. Feature extraction involves enhancing the dataset with additional features to

improve model performance. Model training and finetuning involve training and optimizing

the models using various machine learning algorithms. Finally, model evaluation involves

assessing the performance of the models using various evaluation metrics. The results show

promising performance in detecting software defects, with F1 scores of 77% and AUC scores

of 85%. The study also highlights limitations and future research opportunities, such as

advanced feature engineering, larger sample sizes, and more complex algorithms. Overall, this

thesis contributes to the development of automated methods for software management and

provides valuable insights for stakeholders in the software development industry.

Lastly, I would like to acknowledge the help from Professor Christos Tjortjis, who

mentored my thesis writing journey, giving valuable advice and guidelines, and the rest of the

Data Mining and Analytics research team of IHU, DAMA for short, who reviewed and

advised me on the more practical parts of the research.
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1 Introduction

This chapter presents the information required to understand the importance of the problem,

the purpose of this research, and the structure of this research paper. The study aims to

develop a framework for automatically evaluating software quality using software metrics and

machine learning algorithms. It employs a quantitative approach to address research questions

related to the selection of code metrics, machine learning algorithms, evaluation metrics, and

the potential impact of feature engineering techniques on the framework's performance. The

methodology involves dataset construction, feature extraction, model training and finetuning,

and model evaluation. The primary objectives include assessing the effectiveness of the

proposed framework in detecting software defects, identifying impactful software metrics,

exploring the effectiveness of different machine learning algorithms, and providing valuable

insights for stakeholders in the software development industry to optimize their development

process. The first section introduces the background information needed to highlight the

importance of the problem. The second section presents the problem and its characteristics.

Next, the third section discusses the statement of purpose of this research. The fourth section

presents the research questions and objectives. The fifth section states our research

methodology approach, while the sixth section presents our research limitations. Lastly, the

seventh section presents the structure of the research paper and some brief information about

each chapter.

1.1 Background
In today's world, management plays an essential role by organizing the limited resources the

environment provides to accomplish a goal. Like all fields, software development has limited

resources (time, budget) to deliver software projects, so management is essential to deliver

results. A study has shown that most tech companies have non-technical managers in leading

positions [1]. We can safely assume that those managers need to learn the technical aspects of

a software project, but they are excellent at utilizing the teams to a great extent [1], [2]. Some

research studies have shown that 31% of all software projects are terminated due to quality

problems, generating losses of about $81 billion annually. In comparison, those that managed

to be delivered have only 42% of the originally planned features; this indicates that quality is

critical for the project's success [1]–[4]. Code quality metrics are a great way to control the
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code-base quality by helping eliminate several contributors to "bad code," such as foul smells

and the effects of poor design or implementation choices [5]. These quality metrics are also

helpful in managing the developers better, which improves their development process and

saves time [2]. A study suggested that most code issues can be avoided by simply applying

quality checks when the work is committed to repositories [5]. Managers should find a way to

evaluate the quality of the code base to save resources and optimize the development process;

for this, code quality metrics are a valuable tool. Nevertheless, since software projects depend

on the skills of a few individuals performing intense manual tasks, there is a need to develop

more automated methods [3].

1.2 Statement of Problem
As technology progresses, new languages emerge, intending to increase productivity and

produce more secure code. One of those languages is Rust, which became public in 2015. The

language aims to produce reliable and safe code with solid guarantees about isolation,

concurrency, and memory safety [6]. Moreover, Rust tends to perform like C++ in some cases

due to the transparent performance model that makes it easier to reason about code efficiency

[6]. An interesting fact about Rust is that 87% of surveyed developers voted it the most loved

language for the seventh consecutive year and wanted to keep using it [7]. Rust as a language

has an average complexity compared to mainstream languages [8], but as software systems

written in Rust grow, they become complex and challenging to comprehend [9]. As a result,

more faults appear, causing delays that raise the development cost [9]. That is why managers

depend on software metrics to comprehend system complexity, which makes the need for an

automated system more important [9], [10].

1.3 Statement of Purpose
During the development of the theoretical background, we found that many papers mention

the need to develop the evaluation of software quality using data mining in other languages

[11]. Moreover, a few have raised the need for a more interactive platform where software

engineers can explore the data and label the groups appropriately [10]. In contrast, others

suggest different classification methods [10]–[12]. In this paper, we suggest a process that

takes several code repositories, automatically annotates code files that had a bug fix in the

past, and trains an artificial intelligence model to detect files with those characteristics. In the

literature, files that contain bug fixes in their past display characteristics of complex code,
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files that are hard to comprehend and more accessible to introduce bugs [13]. Our purpose is

to evaluate if this procedure can display positive results and evaluate various machine

algorithms and the models they produce.

1.4 Research Questions and Objectives
To approach a solution to the problem, we constructed the following research questions. The

main question is whether or not our proposed framework produces acceptable results.

However, to answer the main question, we must first justify five sub-questions that further

strengthen its importance. Those sub-questions study which software metrics and machine

learning algorithms work best, what evaluation metrics to use, and whether we can improve

the result by utilizing feature engineering techniques.

● RQ: Does our proposed automatic software quality evaluation framework produce

acceptable results?

● RQ1:Which code metrics should we use?

● RQ2:What subsets of data should we use?

● RQ3:Which machine learning algorithms produce acceptable results?

● RQ4:Which classification evaluation metrics should we use?

● RQ5: Could we use feature engineering techniques to improve the result?

1.5 Research Methodology
The first step in the methodology was the construction of the dataset. That involves creating a

ground truth dataset to train the models and evaluate their performance. We constructed the

dataset in five steps: the creation of the repositories sample, the collection of the commit

messages and their metadata, the NLP analysis of the commit messages, the extraction of the

software metrics, and the merging of all the information produced from steps three and four.

The second step involves enhancing the dataset with features to check if the models can be

improved. This step involves filtering the data to remove outliers, applying feature

engineering, and extracting more advanced features by clustering the entries. The third step

involves training and finetuning the models. The study used machine learning algorithms,

including Decision Tree, Random Forest, Perceptron, and XGBoost. We trained the models

using the dataset constructed in step one and the features extracted in step two. The study

used RandomizedSearchCV to stay within time constraints and not exhaustively test the

whole parameter set space. The final step involves evaluating the performance of the models
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and picking the best-performing model. The study used various evaluation metrics, including

accuracy, precision, recall, F1 score, and AUC score. The proposed methodology involves

constructing a dataset, extracting features, training and finetuning models, and evaluating

their performance. The study used a quantitative approach to cover the research questions and

compared the results for different methods to pick the ones that performed better based on

various evaluation metrics [14]–[16]. We discuss the methodology further in Chapter 3.

1.6 Research Limitations
To conduct this research, we took the following assumptions and hypotheses to provide a

solution with our limited resources. Because many code repositories are available, extracting

and training a model on this data size would take a long time, so we sampled the repositories

with a very detailed procedure. In addition, we assume that code that contains bug fixes in the

past we consider as complex. A paper by Khoshgoftaar presented that when code is complex,

developers need help understanding it, making it harder to maintain and more accessible to

introduce bugs [13]. Lastly, in the literature, many papers state that data extracted from

software metrics can contain outliers and noisy samples. To combat that, we used a large

sample size and features extracted from applying clustering to alleviate that problem [10].

1.7 Organization of Dissertation
This section describes the thesis's structure and details each chapter. Chapter 2 contains the

theoretical background essential to our work and related work that we depend on or improve

their results. Chapter 3 presents our proposed methodology in detail, including the data

gathering, model training, and evaluation. Chapter 4 contains all the results produced during

our experiments with essential insights. Chapter 5 discusses our most important observations

during our research and comments on the results. Chapter 6 collects all the future work

suggestions that could improve the proposed framework. Lastly, Chapter 7 concludes our

research work and answers the research questions.
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2 Literature Review

This chapter presents all the background information and the current research efforts relevant

to our research. The first section presents theoretical background information, which we will

use as building blocks for our methodology. In the second section, we present related works

from the literature that we use their methodology to improve further and bring value, as well

as some works that act as a baseline to compare in the research field.

2.1 Background Information
This section presents the theoretical information we use in our proposed methodology. The

first subsection introduces software quality, its importance, and a proposed quality evaluation

model. In the following subsection, we present software metrics and a brief description of

various software metrics. Next, we give details about Data Mining and Machine learning and

their research fields and highlight essential areas we use. The following subsection presents

various classification model evaluation metrics we used in the research, and lastly, we make a

short introduction to the Natural Language Processing research field.

2.1.1 Software Quality
Software quality is essential because many businesses depend on software to function, and

quality software can be safe and more straightforward to extend. There are many models to

assess the quality of software components. The literature separates software evaluation

methods into two categories based on whether the approach is product-specific or generalized.

Product-specific models utilize historical trends, expert observations, and requirements to

construct a model that evaluates the quality of a specific code repository. In contrast,

generalized models use various code repositories as a sample to construct the quality

estimator [2].

One of the most cited quality standards is ISO/IEC 9126, designed to provide

guidelines and strategies for evaluating the quality of software components and making

evaluation reproducible. The standard was proposed incrementally in 4 parts. The first part

mentions the connection between different evaluation approaches and additional
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characteristics that help detect quality. The second part defined external metrics that assist in

quantifying quality characteristics. The third part is similar to the second but refers to internal

metrics. The fourth part is more user-centric and studies metrics that measure the quality

characteristics of the user [17].

2.1.2 Software Metrics
To decide whether a software component is simple and assess its maintainability, an

individual has to read the code and decide. However, this requires knowledge of software

programming, so they must inspect the code quality using other means. One of those means is

software metrics, where they extract various characteristics of the code and translate them into

numbers. That makes it easy for individuals who do not understand software programming or

do not have too much time to take a quick glimpse at the modules, compare them with others,

and decide if they fit the requirements. Our research uses the rust-code-analyzer tool to extract

software metrics from the source code. The tool computes 11 software metrics for the whole

file and each component individually and structures them in a nested tree format. If the

software module contains children, the tool calculates statistics (average, min, max) for each

software metric of the values of its children [18].

Metric Description Calculated Values

Cognitive

Complexity

This metric describes how difficult it is to

understand a unit of code. It studies how much

the code branches and the amount of variables

in the current scope and, through an empirical

study, quantifies the effort a developer will

consume to understand the code [18].

Value

Sum

Average

Min

Max

Cyclomatic This metric calculates the branching factor of a

code fragment. The higher the number, the

more complex a fragment and the harder it is to

maintain [18].

Value

Sum

Average

Min

Max
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SLoc This metric counts a code element's total code

lines [18].

Value

Average

Min

Max

PLoc This metric counts a code element's logic code

and comment lines [18].

Average

Min

Max

CLoc This metric counts a code element's total

comment lines [18].

Average

Min

Max

LLoc This metric counts a code element's total logic

code lines [18].

Average

Min

Max

Blank This metric counts a code element's total logic

code lines [18].

Average

Min

Max

Loc This metric contains average values of all

previous metrics (SLoc, PLoc, LLoc, CLoc,

Blank) [18].

SLoc

PLoc

LLoc

CLoc

Blank
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Halstead That is a collection of metrics that encapsulate

the maintainability of a software component.

Some metrics include the estimated time to

implement this module and the estimated bugs

that hide in the source code [18].

n1_min

N1_max

n2_min

N2_max

Length

Estimated_program_length

Purity_ratio

Vocabulary

Volume

Difficulty

Level

Effort

Time

Bugs

Mi This metric is the Maintainability index,

another measure that tries to represent how

maintainable a piece of software is. This

number is between 0 and 100 [18].

Original

Sei

Visual_studio

Nom The number of method metrics counts the

number of methods that appear in a source file

[18].

Functions

Closures

Functions_average

Closures_average

Total

Average

Functions_min

Functions_max

Closures_min
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Closures_max

NArgs This metric measures the number of arguments

for a function/method [18].

Total_functions

Total_closures

Average_functions

Average_closures

Total

Average

Functions_min

Functions_max

Closures_min

Closures_max

NExit This metric counts the number of possible exit

points from a function/method [18].

Sum

Average

Min

Max

Table 1. Software Metrics we used in our research and their description.

2.1.3 Data Mining

In recent years, rapid digital transformation has converted many legacy systems into digital

equivalents, generating enormous amounts of data hiding valuable insights researchers can

extract. Data mining is the research field that studies how to extract valuable facts and

insights from data through a standardized process of collection, cleaning, processing,

analyzing, and extraction. This field is characterized by various challenges, like the

differences between multiple data types, even in the same dataset, the missing values, or the

size of the datasets are some of them. The field studies many algorithms that try to fix the

issues a researcher can face during the data mining process and produce the result [16].

Data Mining Workflow
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The data mining steps are standard, and the researcher should pay attention to them to succeed

in their research. The list below describes the steps and some of their details [16].

1. Data Collection: In this step, the researcher should pick the sources from where they

will collect the data, check if the source is reliable, and find a way to store it

efficiently without information loss. A data warehouse is an essential tool to store data

if they have a considerable volume because the system might fail to record that much

data [16].

2. Data Cleaning & Preprocessing: The sources might be unreliable and provide

inaccurate or corrupt data, and those values should be detected and removed.

Moreover, the dataset balance is significant and can impact the extracted information,

so the person performing this step should take extra care. There are many algorithms

and approaches to solve this problem, like dropping rows with missing values or

detecting outliers through statistical clustering processes. Lastly, the researcher has to

convert the data types and encode them into other formats that the algorithms can use

[16].

3. Feature Extraction: In this step, the researcher seeks to extract other data from existing

data. One notable example is extracting a person's age from their date of birth. In

addition to simple feature extraction, the researcher can use more advanced feature

engineering techniques, such as the distance from various clusters or even the

classification ID of a record [16].

4. Analytical Processing: In this step, the research utilizes multiple algorithms, from

classification, associative rules, clustering, and outlier detection, to extract insights

from the data. Depending on the problem, the researcher has to pick the algorithm that

covers their needs and finetune it to improve its effectiveness. If the data do not work

with the current algorithm, the research should reconsider, preprocess, and scale them

to fit the algorithms' requirements [16].

5. Extracting: After completing all the previous steps, the researcher can study the results

and collect all the interesting insights and observations [16].

Areas of Data Mining

Data mining has four areas of interest: association and pattern matching, clustering,

classification, and outlier detection. Different algorithms can solve those problems, but one

can combine them to reach a common goal [16].
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1. Association and Pattern Mining: In large datasets, there are patterns of associations

between the data that are hard for someone to identify with the naked eye due to the

complexity or size of the dataset. In this problem, we utilize algorithms to find the

data's rule associations or occurring patterns. For example, in a dataset of supermarket

transactions, we can identify if a customer buys Product A and Product B; they will

probably purchase Product C, so we can utilize this insight to design the shop floors.

Known algorithms of this category are the Apriori Algorithm and FP-Growth [16].

2. Data Clustering: Sometimes, we must find groups in the datasets for marketing

purposes or find outliers to remove them. Clustering is a great tool that we can use to

find groups with common characteristics and identify noisy records that do not belong

to any to remove them. We can distinguish the clustering algorithms into different

categories based on how they separate the groups; the most noticeable approaches are

Density-based Clustering, Distribution-based Clustering, Centroid-based Clustering,

and Hierarchical Clustering. The known algorithms of this category are K-Means,

Aggregate clustering, and DBScan [16].

3. Outlier Detection: Some data mining algorithms can be proven helpful in detecting

outliers or noisy records from a dataset. Outlier detection is proper when we must act

if we detect one. One example of such a case is the credit fraud prevention systems.

Another case is when noisy data contribute negatively to the performance of other data

mining algorithms. Some algorithms that can perform outlier detection are KNN,

DBScan, and Local Outlier Factor [16].

4. Data Classification: In this area, the researcher aims to figure out how the dataset

items are partitioned already in their categories. The researcher can achieve this by

constructing a model representing that knowledge and then using this model to predict

unknown records and classify them. In our research, we will mainly utilize

classification algorithms to construct a model that will predict if a code module

contained a bug fix in the past. We can then use this model to predict code modules

likely to contain a bug and require maintenance. Some noticeable classification

algorithms are decision trees, random forests, and SVM [16].

2.1.4 Machine Learning
Machine learning is a research field that studies algorithms that solve complex problems that

traditional programming cannot solve. An example of such a problem could be image

recognition and object detection. Machine learning algorithms solve many problems

-11-

https://www.zotero.org/google-docs/?iRBQn7
https://www.zotero.org/google-docs/?AxQeW5
https://www.zotero.org/google-docs/?VvxrbN
https://www.zotero.org/google-docs/?JGfF0g


generically by producing models that can predict the labels of a record. The creation of the

model process is called training. The problems that machine learning is trying to solve are

classification, clustering, and regression. Classification is about predicting whether a record

belongs to a class. Clustering studies how to group records with similar characteristics.

Regression studies how to create models that predict continuous numbers [15].

2.1.4.1 Learning Models
The literature separates machine learning algorithms into three groups based on how they

create the models. That distinction depends on the available data we have on hand and the

goals we are trying to achieve [15].

1. Supervised Learning: This learning method's algorithm input is a labeled dataset in

this learning method. That means the data contains the target feature we want to

predict. Then, the algorithm trains a model that encapsulates knowledge on predicting

that feature using the other features. This learning method can solve classification and

regression problems [15].

2. Unsupervised Learning: In this case, we provide the machine learning algorithm with

data that do not contain a target feature, but instead, we try to uncover groups that

show a trend in the data [15].

3. Semi-Supervised Learning: In this scenario, we initially perform an unsupervised step

to cluster the data and assign cluster ID to the records, and then we try to create a

supervised model that predicts this grouping [15].

4. Reinforced Learning: In this learning method, we create a reward function, and the

model inputs its following action into the defined function, and this function then

rewards or penalizes the algorithm. Overall, the algorithm tries to create a model that

displays desirable behavior that maximizes the results and minimizes the penalties

[15].

2.1.4.2 Overlap with Data Mining
It is noted in the literature that those two fields have overlapping interests, especially in data

classification. However, machine learning tends to study the theoretical and statistical aspects

of the algorithms, whereas data mining studies how we can extract knowledge from the

provided data [16].
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2.1.5 Data Classification Evaluation Metrics
In classification problems, we aim to predict a variable Y from a dataset X, and we can do this

by applying a wide array of algorithms that train models that can perform this operation

. The idea behind those models is straightforward: the models try to assign the𝑓(𝑋) =  𝑌

most probable Y value given X features. Nevertheless, in some cases, we have to compare

which algorithm is the best, and then we have to find which hyper-parameters tune the model

to have the best performance. Classification evaluation metrics provide a way to compare how

different algorithm models perform or find the hyperparameters that produce the best result.

The subsections below will describe some basic evaluation metrics we plan to use in our

research [19].

Confusion Matrix

This matrix will act as a foundation for other classification matrics. In this table, we can

observe the Actual vs Predicted count of records after using the model to predict the values

[16].

Actual / Predicted Positive Negative

Positive TP FN

Negative FP TN

Table 2. Confusion Matrix

Accuracy

This evaluation is the easiest to understand because we compare the correctly predicted items

against all the items in the dataset. Unfortunately, the metric can hide the model's actual

performance if the dataset is unbalanced or the weights of the classification labels are

different. On the other hand, Balanced Accuracy treats each class equally and considers

possible imbalances [16].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  ((𝑇𝑃 / 𝑇𝑜𝑡𝑎𝑙
𝑟𝑜𝑤1

) +  (𝑇𝑁 / 𝑇𝑜𝑡𝑎𝑙
𝑟𝑜𝑤2

)) / 2
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Precision

This metric describes the number of TP records the model predicted correctly compared to the

total predicted Positive entries [16].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Recall

This metric describes the number of TP records the model predicted correctly compared to the

total number of positive entries [16].

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁

F1

This metric is the harmonic mean of Precision and Recall. It is a safe way to combine the

Recall and Precision metrics and account for significant differences between those two

metrics [16].

𝐹 = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙( )

Micro and Macro Average

In case of imbalances, the mentioned metrics favor the target label, so if we want to care for

those scenarios, we can use their micro or macro average statistics [16].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑚𝑎𝑐𝑟𝑜

= 𝑘=1

𝐾

∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑘

𝐾 ,  𝑅𝑒𝑐𝑎𝑙𝑙
𝑚𝑎𝑐𝑟𝑜

= 𝑘=1

𝐾

∑ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑘

𝐾 ,  𝐹1
𝑚𝑎𝑐𝑟𝑜

= 2 ·
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑚𝑎𝑐𝑟𝑜
 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑚𝑎𝑐𝑟𝑜

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑚𝑎𝑐𝑟

−1 + 𝑅𝑒𝑐𝑎𝑙𝑙
𝑚𝑎𝑐𝑟𝑜

−1( )
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑚𝑖𝑐𝑟𝑜
= 𝑅𝑒𝑐𝑎𝑙𝑙

𝑚𝑖𝑐𝑟𝑜
= 𝐹1

𝑚𝑖𝑐𝑟𝑜
= 𝑘=1

𝐾

∑ 𝑇𝑃
𝑘

𝑇𝑜𝑡𝑎𝑙 𝐼𝑡𝑒𝑚𝑠

AUC ROC

This metric is the receiver operating characteristic or area under the curve. It measures the

area under the line formed by plotting the True Positive Rate and False Positive Rate at each

threshold setting [20].

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 ,  𝐹𝑃𝑅 =  𝐹𝑃

𝐹𝑃 + 𝑇𝑁

2.1.6 Natural Language Processing
The field of Natural Language Processing studies how machines can understand and interpret

human languages. Some challenges NLP tries to solve include text-to-speech synthesis,
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speech recognition, text generation, text summarization, and question responses. The

literature characterizes NLP as a complex field, and for each challenge, various algorithms try

to solve it. The language context makes the construction of capable algorithms in NLP

because many languages have words that can have different meanings in other contexts. For

our research, we require a small background in NLP to perform an ad-hoc implementation

that detects commits that perform a bug fix [15].

The first component we have to understand is the tokenizer. The tokenizer is

responsible for breaking down strings into separate words in their simple form. The first step

is to separate the words into separate tokens. For example, we can do this in English by

utilizing the space character, as most words in English are separated by a single space

character. Next, we removed all special characters and stopwords, so we only had spoken

words. Then, we have to stem the words into their basic form, and for this, various algorithms

do that for us. Overall, the tokenizer provides us with an array of all the words in the message

in the correct order, and we can use this array to understand the context of the message [15].

The next thing we have to understand is TF-IDF. If we want to match a document for a

query, the document with the most appearances of a particular word will be the first result of

the query. To prevent documents that misuse or misplace words to gain rank from appearing

in our search, we can use TF-IDF to compare the word appearance against how much this

word appears in other documents. In this way, a document that contains a word many times

will have a smaller distance from one that contains the same word fewer times [15].

2.2 Related Work
This chapter presents papers relevant to our work, their approach to the problem of software

quality evaluation, and their results. In the literature, there are many approaches to solving the

problem of predicting the quality of software components. Some studies use association rules

to prevent errors from incomplete changes, while others use classification to prioritize bugs or

classify error-prone code [9], [10]. In addition, some papers use clustering to group

good-quality software modules and detect bad ones. In contrast, other papers use text methods

to extract bug fixes and where the bug occurred [9], [21]. The first subsection presents works

that utilize unsupervised learning algorithms to evaluate software quality. In contrast, the

second subsection presents supervised learning algorithms for software evaluation. The third

subsection presents semisupervised algorithms that use both methods to address the problem

of software quality evaluation. Lastly, the fourth subsection presents works on how to mark
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bug-fix git commits that aid us in marking files that contain bugs and studying their

characteristics.

2.2.1 Unsupervised Learning Software Quality Evaluation
Some papers extract software metrics from the code files and utilize clustering methods to

assign labels to them. Then, those labels and software metric characteristics are evaluated by a

group of software experts and assigned whether the code is hard to maintain. In the paper of

Antonellis et al., their methodology was to extract the metrics, assign weights to them,

perform clustering, and then study each cluster file characteristic and mark which clusters

contain hard-to-maintain code. The software evaluators adjust the weights to produce the

expected result, and they propose that those weights represent their knowledge that can be

utilized in other projects, too [11]. In another paper by Zhong et Al., they suggest that

collecting fault measurement data is a tedious process, so using experts to perform clustering

analysis to define clusters of code that display problematic characteristics can prove a

valuable solution to the error-prone problem that is robust to outliers [10]. Arshad and Tjortjis

propose an automated way to identify hard-to-maintain software components. They use data

mining algorithms and software metrics to discover hidden patterns in the source files and

plot the extracted groups and their statistics. They concluded that the plots could help a

manager understand which cluster groups hide potential high complexity that might be a

hotspot for faulty and hard-to-maintain code [12].

2.2.2 Supervised Learning Software Quality Evaluation
Examples in the literature use classifiers to predict software quality using software metrics

combined with cluster labels. Khoshgoftaar's work uses linear models and clustering

classification models, and those models in majority voting ensembles. In their work, they

reached around 25% type A and type B errors and had interesting findings regarding using

voting models, but they had a limited dataset, and their training process could not scale to

large datasets [13]. Again, the paper proposed by Zhong et Al. demonstrated supervised

learning with features extracted from a classification labeling with experts where they showed

25% False Positive and False Negative rates and utilized a large number of algorithms from

linear to trees and neural networks, but only used two annotated datasets for their results and

the process is not automated [10].
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2.2.3 Semisupervised Learning Software Quality Evaluation
In the paper of Papas and Tjortjis, they propose a new approach to evaluate software quality.

Their approach uses metrics to perform unsupervised clustering and annotate clusters with

complex code. In the next step, they use classification algorithms to learn the characteristics

of those clusters and train a model. In addition, they used IQR outlier detection to remove

extreme values and further improve the model's performance [22].

2.2.4 Marking Bug Commits
Many papers in the literature try to provide a solution to detect and mark known defects in

software components [21]. We can extract information about those bugs from bug-tracking

tools, the source code, or the commit messages the developers populate during the

development of an application [21]. The commit messages show incredible potential for

marking fault code because they describe the developer's tasks, and if we utilize version

control difference tools, the code changes [21]. Gyimesi et al.'s research created a framework

for collecting bugs in source repositories by looking at the tags attached to the reported issues

on GitHub. However, they discussed using commit messages and diff to mark files containing

bugs [21]. In the work of Casalnuovo et al., they try to classify git commits using regular

expressions. Their proposed methodology is three steps: extracting the commits, processing

the text, and patch referencing. In the first step, they extract all the commits information. In

the second step, they perform an NLP analysis to detect the words that refer to bug-fixing

commits. In the last step, they parsed the code difference, and the process used regular

expressions to detect the class of the commit [23]. Lastly, in the work of Zafar et al., they

propose a framework to mark bug commits using Bidirectional Encoder Representations from

Transformers (BERT). In their paper, they finetuned the BERT model to understand

bug-fixing commits, and they showed 92% accuracy compared to 84% accuracy of

keyword-based solutions [24].

3 Methodology

During our literature research, we observed that most work uses a narrow selection of datasets

to train their models, thus making our efforts to create a framework that automatically creates

the dataset and training of the models more critical [25], [26]. The proposed methodology
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consists of four procedures: the construction of the dataset, the extraction of features, the

training and finetuning of the models, and the evaluation of the model's performance. In the

first procedure, we created the dataset as the ground truth to train the models and evaluate

their performance. In the second procedure, we enhanced the dataset with features to check if

we could improve the models. In the third procedure, we trained and finetuned the models; in

the last, we evaluated their performance and picked the best-performing model.

3.1 Data Collection
The procedure of dataset construction is divided into five steps: the creation of the

repositories sample, the collection of the commit messages and their metadata, the NLP

analysis of the commit messages, the extraction of the software metrics, and the merging of

all the information produced from steps three and four.

The data used in this research originate from three sources: the crates.io database, the

SEART GitHub database, and the GitHub API. The crates.io database contains many

open-source Rust libraries and valuable metadata (https://crates.io/data-access). The SEART

GitHub database is an up-to-date metadata collection from all the public GitHub repositories

with ten or more stars [27]. We used this database because it provides an easy way to extract

information for all repositories of Rust code through its filtering functionality. Lastly, the

GitHub API fetches information related to repositories not covered by the SEART GitHub

database or the repository metadata [27]. This information is related to pull requests and

reported issues referenced in the commit messages. We collected the data 2023-07-04 for the

crates.io database, 2023-07-12 from the GitHub repository database, and 2023-07-31 for

repositories and all their related metadata (pull requests and issues).

3.1.1 Sample Repositories
Since there are thousands of repositories on public code repositories like GitHub, we created a

sample of repositories representing the total population. In order to satisfy our sampling

strategy, we used the metadata from crates.io and SEART GitHub to pick a dataset with

high-quality repositories that try to include the characteristics of the total population as much

as possible. We did this to achieve acceptable performance at a reasonable train time. This

step is divided further into five stages. We collected and merged the metadata from the

SEART and crates.io databases in the first two stages. In the third stage, we created a new
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feature to assist in picking a uniform sample. In the fourth stage, we removed the noise; in the

fifth stage, we sampled the final repositories list.

In the first stage, we explored and cleaned the SEART dataset. The following filters

were used (Language: Rust, Exclude Forks, Has Open Issues, Has Pull Request) for the query,

resulting in a downloaded database containing metadata for 7919 Rust repositories. The

provided dataset contained only repositories with ten or more stars; it does this to filter

repositories with little development activity [27]. In addition, those repositories would only

contribute a little to the research. Then, we removed the archived repositories, which refers to

repositories that stopped their development activity, which excluded 265 repositories; after

that, 7654 repositories remain. Because ethical and legal issues play an essential role in

research, we only included repositories with permissive licenses (MIT and Apache). After

applying all the mentioned rules, 5089 repository entries remained.

Figure 1. Sourcing repositories from the SEART database.

We merged the cleared data from the SEART GitHub database in the second stage

with the crates.io database. The crates.io database consists of 104736 repositories, but after

we excluded repositories hosted in alternative code repositories, like GitLab or BitBucket,

10346 were removed, and 94390 remained. Next, we merged entries of the list that had the

same paths, ending up with 52904 remaining repositories. Then, the cleaned crates.io data

were joined with the 5089 repository entries from the prepared SEART database, resulting in

2452 repositories. Lastly, repositories with missing values in the column of code lines were

removed, excluding 822 repositories, resulting in 1630 repository entries after the filtering.

-19-

https://www.zotero.org/google-docs/?TCaOFm


Figure 2. Sourcing repositories from crates.io database.

In the third stage, we created a new feature to separate the repositories into three

groups to achieve a uniform selection of repositories. The perfect candidate for this is the total

repository code lines because they allow all repositories to be selected, from large to small

repositories and all in between. During the analysis, the charts showed that there are small

repositories with lots of activity and large repositories with the same activity level. Still, those

repositories have different characteristics regarding the software metrics, as seen in Figure 5.

To achieve a more unbiased dataset that will result in more robust models, we created a

feature called code_size_group, which separates the repositories into three groups: small with

less than 2438 total lines, medium with more or equal to 2438 and less than 10340, and large

with more than 10340 lines. As seen in Figure 3, the distribution of repositories across the

code_size_group feature follows a uniform distribution.

Figure 3. Before and after outlier removal number of repositories per

code_size_group.
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In the fourth stage, after some data exploration, it was evident that there were some

repositories with an extreme number of commits activity, and by looking into their

repositories, this activity is related to automatic bot commits. To clean the data from bot

activity noise, we removed those outliers by using the commits feature column. A percentage

target of 99.8% of the total distribution distribution is used for the outlier removal, trimming

the extreme tails. In Figure 4, the distribution of commits activity before and after removing

the outliers shows that removing outliers provides a better dataset.

Figure 4. before and after outlier removal.

To verify if our proposed separation methodology effectively separated the

repositories into three easily distinguished categories, we created various feature distributions

of the dataset. Lastly, we observed that the proposed method provides a good criterion for

separating the collection of repositories into three groups based on the current metadata.
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Figure 5. Comparing different feature distributions in contrast to code_size_group.

In the fifth stage, we sampled the final repositories list. Firstly, we sorted the

repositories by commits and code_size_group. Then, we selected the first 110 from each

code_size_group after manually skipping repositories that either had auto-generated commit

activity from bots or their files generated automatically. Later, we regenerated the figures to

determine if the sample could represent the more extensive list. Our sampling method could

be better because it follows a hand-picked strategy using the top records of two characteristics

[14], [27]. Figure 6 shows that the repositories cover a wide range of the current metadata in

the selected sample groups. If we compare it with Figure 5, we can observe that we achieved

a good sampling.
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Figure 6. plots of repository features grouped by code_size_group of the final sample.

In conclusion, in this step, we created a sample that encapsulates as much information

as possible from the wide range of characteristics the actual population holds. To achieve that,

we combined metadata from two databases, removed entities with wrong details and outliers,

separated the repositories into three groups based on their total lines of code, and sampled 110

repositories from each group, totaling 330 repositories for our sample size.

3.1.2 Collect Repositories Metadata
In this step, we collect all the available metadata for the repositories of the samples list. The

available metadata are the code files, the commit messages, the issues, and the pull requests of

the repositories. In the first stage, we downloaded all the repositories and their code files with

the help of a simple bash script. The script takes as input the list of repositories and performs

a git clone operation. Then, in the second stage, we extracted the commit messages for each

repository and saved them into a CSV file. After that, we performed an exploratory analysis

of the commit messages and observed that sometimes the commit messages reference pull

requests or issues. So, in the third stage, we downloaded all the commits and pull request

messages from the GitHub API of each repository and saved them into a CSV file. Lastly, in

the fourth stage, we combined all the commit messages with their referenced issues and pull

requests into a CSV file that contains 344420 commit messages. In Figure 7, there is a

reduced description of the pipeline steps.
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Figure 7. Commits metadata collection pipeline.

3.1.3 NLP Analysis of Commit Messages
After collecting all the commit messages of the repositories, we performed a Natural

Language Processing analysis in this step to find keywords that determine if a commit

message is a bug-fix or not. We utilized pandas with clustering algorithms from scikit-learn

Python libraries [28], [29].

In the first step, we preprocessed the commit messages by removing stopwords,

breaking the texts into arrays of tokens, and then vectorizing the tokens using TFIDF [23].

After that, we extracted the keywords by performing a loop of clustering the commit

messages, extracting the keywords, and starting again. We used K-Means for the clustering

algorithm and stopped the loop when the clusters reached the desired characteristics. Below

are the details of the loop steps:

1. To find the optional cluster size, in this step, we perform K-Means from two to twenty

cluster sizes, and for each cluster size, we calculate and store the sum of squares error.
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Next, we plot the error to the cluster size chart and manually select the optimal cluster

size at the elbow point [21].

Figure 8. Elbow curve of the first run.

2. In this step, we recalculate the clusters using the cluster size found in the previous step

and construct the word frequency diagram of each cluster.

Figure 9. TF-IDF plot for cluster #8 and cluster #17.
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3. In this step, by analyzing the frequency diagrams, we extract words for the include and

exclude lists by observing their frequency and appearance in pairs. For example, in

Figure 9, we can observe the appearance of the word fix, which is a word that

indicates that this commit is a bug fix. However, this word can have a different

meaning in another context. For example, as seen in Figure 9, “Fix Clippi” indicates

that this commit does not fix a software bug but instead the software indentation. So

we should proceed and add the word clippi to the skip words list.

4. To prepare for the next iteration, in this step, we remove the commit messages that

contain words of the skip words list. Then, we plot the frequency diagrams to

determine if the output fits our needs, and if it does, we stop the loop; if not, we

continue to step one.

Our research efforts concluded with the following lists:

● Include: bug, fix, bug-fix, fixes, refactor

● Exclude: ci, build, doc, changelog, dependabot, lint, clippi, dep, chore, typo, test, fmt,

readm, exampl, md, format, debug, remov, comment, name, compil, warn, harald, link,

indent, window, rust, version, travi

3.1.4 Mark Bug-Fixing Commits
We used the keyword lists produced from the 3.1.3 subsection to mark which commits are

bug commits. We based this step on the work of Casalnuovo et al., who propose a framework

for marking bug-fixing commits using regular expressions and NLP analysis. However, we

kept only the last part because it was easier to implement and fulfilled the task of marking

files that had a bug fix in the past, which is essential for our research [23]. We marked

commits as bug commits when they contained any of the words in the include list but not if

they contained any word from the exclude list. As a result, 24500 commits have a true value,

and 319920 do not.

3.1.5 Extract Commit Hashes of Files
To assist our marking of files that appear in bug commits, in this step, we extracted the hashes

for each file of the sampled repositories and collected them into a single file. We developed a

script that iterates all the files of each repository folder, extracts the git commit history,

collects the hashes, and appends them into a collection with information about the file.
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3.1.6 Extract Software Analytics
We used the rust-code-analyzer to extract the software analytics of rust code, which we

discussed in detail in the 2.1.2 subsection. After extracting the data, we converted their

format into a more friendly format for machine learning training, from the nested JSON to a

flat vector format. Because the JSON produced by the tool is a nested tree of metric nodes, we

wrote a function that converts each node into a separate data entry. The method extracted

520753 entries of different software components. The procedure also added the following

features:

● id: unique number for each data entry

● size_group: the repository size group identifier (large, medium, small)

● repository: the name of the repository

● item_path: the location of the extracted data extry to assist in debugging

● has_spaces: if the entry is a parent of nested components

● spaces_len: the number of children's components

● max_depth: the max nest level

● nest_level: the current nest level

3.1.7 Merge Information
Each of the above steps produced different pieces of information, and in this step, we merged

everything into a single data collection. Firstly, we merged the marked commits extracted

from subsection 3.1.4, and the file hashes from subsection 3.1.5, with the commit hash as the

join key. To keep only the unique file appearances, we sorted the files in order of whether they

were in a buggy commit and then dropped the duplicates by keeping only the first appearance.

By doing this, we kept whether the files appeared in at least one bug commit. Then, we

merged the collection with the software metrics collection using the file name and repository

as the join key. We concluded with a dataset of 520753 records of all the files of the

repositories and their software metrics for their different components marked if they belong to

a commit that performed a bug-fix.
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Figure 10. Overview of Data Collection Pipeline.

3.2 Feature Extraction
Frequently, due to insufficient data coding, the dataset may contain information not valuable

to us. In addition, the data could contain hidden patterns or groups not visible with a simple

statistics analysis. Thus, performing feature extraction can benefit us by providing extra

information that we can use to increase the performance of the models. In the following

subsections, we describe the procedure of feature extraction, which we divided into three

steps: filtering the data, adding clustering features, and adding extra features.

3.2.1 Filtering
Before extracting features, we had to ensure that our data contained meaningful data, so in

this step, we describe the filtering steps we performed on the dataset. Our following action

was to handle missing values. We counted 23000 records that contained missing values, and

to understand them better, we calculated some statistics of the lost value records. We observed

that records with few lines of code failed to receive some metric values, and the metrics tool
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documentation pointed out that some metrics require code structures to calculate a metric, so

we proceeded and ignored records with five or fewer lines of code. In addition, items that

contained only constraints or single line items failed to produce any metrics, so we removed

those records. Those steps removed 21000 entities, and we removed the rest of the 2000.

Lastly, in this step, we removed all the items that referred to the testing code, and as a result,

we removed 27000 records in the process, leaving 266838 items in the end.

3.2.2 Clustering
To enrich our data further, we used various clustering algorithms to detect hidden groups. The

clustering algorithms can group data entries with similar features, providing another piece of

data for the classification algorithms. Those groupings are hard to detect with statistics

analysis due to the amount of data; that is why we resort to clustering algorithms [15], [16].

The first clustering algorithm we used for classification was K Clusters, with

Euclidean distance. To find the optimal cluster number, we utilized the elbow method.

Moreover, we recorded the cluster groups with no data scaling with standard, robust, and

min-max scalers to check whether extreme values influence the clustering. Figure 10 shows

that the optimal cluster size for the unscaled data is 6, for the standard 10, for the robust 4,

and for the min-max 8. In addition, we can observe that the unscaled data does not display a

solid convergence for an optimum grouping size.
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Figure 10. Elbow diagram for different scalers. Top left - None, top right - Robust, bottom

left - Standard and bottom right - MinMax.

Lastly, we calculated the cluster groups using the DBScan algorithm, with

min_cluster_size set to 1000, firstly with the StandardScaler and then with the MinMaxScaler.

We used only those two scalers because when we tested the no-scaling and normal scaling.

3.2.3 Extra Features
In the last step of the procedure, we created some extra features derived manually from the

dataset's data. Many datasets can contain information hidden in complex features. For

example, we can extract a person's age from the date of birth, which can be a decisive factor

in classification algorithms. Those features can contribute positively to the model's

performance, so we performed this step to extract them. This subsection describes the features

we extracted and how we did it.

● has_spaces: This feature is a boolean value, representing whether the entry is a parent

of other software components (functions, structs, traits). In the data provided by the

analysis tool, a field named spaces exists, and this field contains each child component

for each software component, so we kept this name and did not refer to whether this

entry contains space characters. For example, a function that defines a helper function

in its body has a child.

● max_depth: This value contains the maximum depth of the entries’ children. For

instance, a trait that defines a function and that function defines another function will

have a value of two.

● spaces_len: This value contains the number of children under the entity. For example,

a trait with eight functions has a space_len of eight;
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● code_lines: In the data provided by the tool, we do not have the lines of code the

software component spans, but instead the starting and ending lines of code, so we

extracted the number of lines from those two features.

Figure 11. Filtering and Feature Engineering Pipeline Overview.

3.3 Data Configurations
We used six data configuration setups for our training and evaluation. Those configurations

help us to test how different algorithms behave to varying amounts of data and detect which

features impact the models the most. Moreover, those configurations assist us in determining

which features contribute to the overfitting of the models if they are present and which ones

do not contribute much and skip them altogether to improve the training time. Lastly, we can

evaluate if the feature engineering had any effect on improving the model performance.

The first configuration is the entire dataset, which includes every feature. Next, the

clusters dataset contains only the features from the clustering step, with the size_group and

record kind feature, excluding the code_lines feature. Then, the primary dataset excludes the

features we added from the feature engineering step and code_lines feature. Next, the plain

collection contains only the raw data extracted from the tool without performing feature

engineering. The following two configurations extend the plain dataset, but one contains the

feature of code_lines of the whole project, and the other contains the feature of the project

size_group.

3.4 Models’ Training
In this section, we describe the proposed training framework of our methodology. We

designed the pipeline to be flexible to use various configuration setups, models, and

evaluation metrics. We used scikit-learn for the training pipeline algorithms and structure

[29]. The models included Decision Tree, Random Forest, Perceptron, and XGBoost. We

trained the models on the constructed dataset on each data configuration we mentioned.

Moreover, we performed the training and finetuning of the models using various optimization
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parameters, and we evaluated the models using several evaluation metrics, including

accuracy, precision, recall, F1 score, and area under the curve (AUC). The following sections

describe the model training algorithms, their optimization configuration, and how we set up

the training pipeline.

3.4.1 Algorithms And Configuration
We used various training algorithms to find the perfect model to solve our problem. Each

algorithm follows a different approach to solving the classification problem, with some

overlaps between them. In total, we used ten algorithms with various optimization parameters.

Table 3 shows the algorithms we used and their optimization parameters.

Algorithm Parameters Algorithm Parameters

Naive Bayes
(GaussianNB

)

None Ridge alpha: uniform(0, 10)
solver: auto, svd, cholesky, lsqr,
sparse_cg, sag, saga

SVM C: uniform(0, 10)
kernel: linear, poly, RBF, sigmoid
degree: randint(1, 10)
gamma; auto, scale, 0.1, 0.01,
0.001

K Nearest n_neighbors: randint(1, 20)
weights: uniform, distance
p: 1, 2

Decision
Tree

class_weight: balanced
criterion: gini, entropy
max_depth: randint(5, 30)
min_samples_split: randint(2, 20)
min_samples_leaf: randint(1, 20)

Random Forest class_weight: balanced
n_estimators: rand(range(5, 53, 2))
criterion: gini, entropy
max_depth: randint(5, 30)
min_samples_split: randint(2, 20)
min_samples_leaf: randint(1, 20)

XGBoost n_estimators: rand(range(5, 53, 2))
learning_rate: uniform(0.01, 4.9)
gamma: uniform(0.0, 10.0)
max_depth: randint(5, 15)
reg_lambda: uniform(0.01, 9.99)
reg_alpha: uniform(0.01, 9.99)
max_delta_step: randint(0, 15)
subsample: uniform(0.5, 0.5)
colsample_bytree: uniform(0.5,
0.5)
colsample_bylevel: uniform(0.5,
0.5)
min_child_weight: uniform(0.5,
9.5)
scale_pos_weight: uniform(0.01,
9.99)

Perceptron 'classifier__hidden_layer_sizes':
[(10,), (25,), (50,), (75,), (100,), (10,
10), (25, 25), (50, 50), (100, 100),
(50, 50, 50)],
'classifier__activation': ['relu', 'tanh',
'logistic'],
'classifier__alpha': 10.0 **
-np.arange(1, 7),
'classifier__learning_rate': ['constant',
'adaptive'],

Bagging n_estimators: rand(range(5, 53, 2))
max_samples: uniform(0.1, 0.9)
max_features: uniform(0.1, 0.9)

Boosting n_estimators: rand(range(5, 53, 2))
learning_rate: uniform(0.01, 4.9)
estimator__max_depth: randint(5, 30)

Table 3. The Classification algorithms we used and the optimization parameters.
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3.4.2 Training Pipeline
In the training pipeline step, we take each algorithm and collect the score metrics of our

choice. We used the plain data configuration to gather a baseline for each algorithm. We used

standard scaling in the following algorithms: SVM because SVMs are sensitive to the scale of

input features, and KNN, because it computes distances between data points, so features with

larger scales, can dominate the distance calculations. We have not used any dimension

reduction algorithms like PCA, and the reason is to prevent information loss and decrease

performance. Because the data are balanced, we have not used data-balancing algorithms. We

used a cross-validation of five to address errors in data sampling methods. Next, we used a

randomized grid search to finetune the models and maximize their performance metrics.

Lastly, we extracted the following metrics for each parameter set used in the random grid

search algorithm: accuracy, balanced_accuracy, average_precision, f1, f1_micro, f1_macro,

f1_weighted, precision, precision_micro, precision_macro, precision_weighted, recall,

recall_micro, recall_macro, recall_weighted, roc_auc.

3.5 Evaluation
To evaluate which algorithm is the best, we performed the following steps to extract data to

aid us in this decision. The first step is determining the best parameter configuration from the

plain dataset results for each model. Then, we extract the following performance metrics for

each model and data configuration: accuracy, precision, recall, f1, and roc_auc. To prevent

overfitting, we selected the parameters where the difference between the train and test scores

is less than or equal to 1%. Ultimately, we have 15 configurations for each algorithm and data

configuration. To evaluate which configuration and algorithm are the best, we combined all

the data collected from the previous step into a big table to aid our comparisons. In addition,

we constructed the confusion matrix for each set and calculated which features influence the

model the most.

3.5.1 Accuracy
Looking at the confusion matrixes for acccuracy in the appendix, we can observe that this

metric favors the primary class of the problem. The literature discusses that balanced accuracy

is better because it compares both classes' average performance [16]. We suggest against

using a model trained only based on accuracy because its overall performance might be

satisfactory.
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3.5.2 Precision
By looking at the confusion matrixes for precision in the appendix, we can observe that

precision tries to create a model that eliminates False Positives but increases the chance of

False Negatives. We suggest using a model optimized for precision to eliminate not detecting

a code module that might require maintenance. However, in the process, we might flag more

modules for maintenance that might not require it.

3.5.3 Recall
On the other hand, by looking at the confusion matrixes for recall in the appendix, we can

observe that recall tries to create a model that eliminates False Negatives but increases the

chance of False Positives. We suggest using a model optimized for recall to eliminate the

unnecessary marking for maintenance of code modules that might not require it. However, in

the process, we increase the chance of missing a code module that might require maintenance.

3.5.4 F1 and AUC
Both metrics perform similarly, and no trend is observed in the classification when using

those metrics. We suggest using a model optimized on those metrics because it gives a middle

ground between recall and precision and can act as a general classifier that can detect code

modules that require maintenance or not. In some cases, the models created optimized for F1

perform better than those optimized for AUC and the opposite. In our case, we observed that

for XGBoost, F1 showed better results, so we suggest using this metric.

4 Results

This chapter presents our findings and simple insights and observations for them. We start by

listing all the classification algorithms we rejected and why they did not produce an

acceptable result. The following sections present the findings for the rest of the algorithms

optimized for the classification metrics of accuracy, precision, recall, F1, and AUC metrics. In

the next section, we analyze the feature importance of the best-performing model. The last

section presents a brief model explainability results for the Decision Tree algorithm.
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4.1 Rejected Algorithms
We would not present the results for the models Naive Bayes, Ridge, SVM, KNearest, and

Boosting because their evaluation metrics do not show that the models can model the

classification problem. The problem does not seem linearly separable, so Naive Bayes, Ridge,

and SVM cannot work with this problem [15], [16], [29]. Regarding the KNearest algorithm,

because of the vast amount of information, the algorithm took very long to complete, so we

skipped the collection of the results for this algorithm. However, we performed a small-scale

test for the KNearest algorithm that showed no significant results.

4.2 Accuracy Score
Decision Tree performs well across different data configurations, with its highest accuracy in

the “Basic” configuration. Random Forest outperforms other algorithms in the “Plain,”

“Basic,” and “Size Group” configurations. XGBoost excels in the “Code Lines” and “Full”

configurations. Bagging performs consistently but must show the highest accuracy in any

specific configuration. Decision Tree and Random Forest have relatively low standard

deviations, indicating performance stability. XGBoost, Bagging, and Perceptron show higher

variability, especially the Perceptron algorithm. Perceptron is the least accurate algorithm in

all configurations, suggesting limitations in capturing complex patterns present in the data.

The same anomaly applies to Random Forest at the Code lines and Full data configurations.

The model capacity plays a vital role in explaining those anomalies, and the literature

suggests that we can fix it by making the models have more parameters and depth [15].

Model \
Data
Config

Plain Size
Group

Code
Lines

Basic Clusters Full

Decision
Tree

68.53% 69.01% 76.41% 68.98% 68.30% 76.11%

Random
Forest

69.48% 69.82% 71.99% 69.92% 68.71% 70.97%

XGBoost 69.13% 69.60% 77.63% 69.43% 69.13% 78.35%

Bagging 68.84% 69.32% 75.92% 69.40% 69.05% 75.54%

Perceptro
n

58.47% 61.97% 51.16% 62.13% 60.62% 51.18%

Table 4. Accuracy score of the tested algorithms and data configurations.
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Model \
Data
Config

Plain Size
Group

Code
Lines

Basic Clusters Full

Decision
Tree

00.16% 00.19% 00.12% 00.16% 00.06% 00.23%

Random
Forest

00.19% 00.12% 00.25% 00.11% 00.18% 00.20%

XGBoost 00.20% 00.10% 00.58% 00.15% 00.14% 00.22%

Bagging 00.14% 00.06% 00.19% 00.10% 00.29% 00.12%

Perceptro
n

03.75% 02.15% 00.08% 02.54% 05.90% 00.11%

Table 3. Standard deviation of the tested algorithms and data configurations.

Algorithm Parameters

Decision Tree 'classifier__criterion': 'gini',
'classifier__max_depth': 10,
'classifier__min_samples_leaf': 18,
'classifier__min_samples_split': 6

Random Forest 'classifier__criterion': 'gini,'
'classifier__max_depth': 9,
'classifier__min_samples_leaf': 13,
'classifier__min_samples_split': 18,
'classifier__n_estimators': 39

XGBoost 'classifier__colsample_bylevel': 0.93,
'classifier__colsample_bytree': 0.66,
'classifier__gamma': 9.54,
'classifier__learning_rate': 0.60,
'classifier__max_delta_step': 5,
'classifier__max_depth': 8,
'classifier__min_child_weight': 8.36,
'classifier__n_estimators': 15,
'classifier__reg_alpha': 9.91,
'classifier__reg_lambda': 9.51,
'classifier__scale_pos_weight': 1.38
'classifier__subsample': 0.77

Bagging 'classifier__max_features': 0.64,
'classifier__max_samples': 0.73,
'classifier__n_estimators': 47,
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'classifier__estimator__max_depth': 8

Perceptron 'classifier__learning_rate': 'constant',
'classifier__hidden_layer_sizes': (50, 50, 50),
'classifier__alpha': 1e-06,
'classifier__activation': 'relu'

Table 5. Optimal parameters of each algorithm that maximizes the accuracy metric.

4.3 Precision Score
Decision Tree and Bagging show moderate precision scores, with Decision Tree performing

better in configurations like “Code Lines” and “Full.” Perceptron has varying precision

scores, with deficient scores in some configurations, particularly in “Full,” due to its limited

capacity to model the complex dataset. XGBoost consistently outperforms other algorithms

across all data configurations, achieving exceptionally high precision scores close to 100%.

However, after closely looking at the confusion matrix in the appendix, it overfitted the data

to match the True class only. That problem can be solved using a balanced metric like

macro_precision [16].

Model \
Data
Config

Plain Size
Group

Code
Lines

Basic Clusters Full

Decision
Tree

63.95% 64.06% 71.15% 63.84% 63.94% 71.13%

Random
Forest

66.99% 67.84% 67.11% 67.48% 69.44% 68.35%

XGBoost 99.89% 99.87% 99.64% 99.87% 99.87% 99.79%

Bagging 64.25% 65.93% 71.73% 65.66% 65.35% 71.70%

Perceptro
n

64.61% 76.64% 23.16% 80.50% 70.38% 0%

Table 6. Precision score of the tested algorithms and data configurations.

Model \
Data
Config

Plain Size
Group

Code
Lines

Basic Clusters Full

Decision
Tree

00.23% 00.21% 00.08% 00.22% 00.79% 00.98%
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Random
Forest

00.16% 00.30% 00.49% 00.20% 00.24% 00.31%

XGBoost 00.06% 00.03% 00.06% 00.03% 00.07% 00.09%

Bagging 00.12% 00.14% 00.22% 00.14% 00.32% 00.16%

Perceptro
n

13.73% 15.21% 28.38% 13.37% 10.99% 0%

Table 7. Standard deviation of the tested algorithms and data configurations.

Algorithm Parameters

Decision Tree 'classifier__criterion': 'gini',
'classifier__max_depth': 9,

'classifier__min_samples_leaf': 4,
'classifier__min_samples_split': 3

Random Forest 'classifier__criterion': 'entropy',
'classifier__max_depth': 5,

'classifier__min_samples_leaf': 1,
'classifier__min_samples_split': 19,

'classifier__n_estimators': 33

XGBoost 'classifier__colsample_bylevel': 0.68,
'classifier__colsample_bytree': 0.90,

'classifier__gamma': 2.78,
'classifier__learning_rate': 1.04,
'classifier__max_delta_step': 8,
'classifier__max_depth': 7,

'classifier__min_child_weight': 9.98,
'classifier__n_estimators': 19,
'classifier__reg_alpha': 9.94,
'classifier__reg_lambda': 0.90,

'classifier__scale_pos_weight': 0.03,
'classifier__subsample': 0.52

Bagging 'classifier__max_features': 0.64,
'classifier__max_samples': 0.73,
'classifier__n_estimators': 47,

'classifier__estimator__max_depth': 8

Perceptron 'classifier__learning_rate': 'adaptive',
'classifier__hidden_layer_sizes': (10, 10),

'classifier__alpha': 0.01,
'classifier__activation': 'logistic'

Table 8. Optimal parameters of each algorithm that maximizes the precision metric.
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4.4 Recall Score
XGBoost achieves perfect recall (100%) in most configurations, except for the “Full”

configuration, which drops significantly. However, after looking at the confusion matrix in the

appendix, we observed that the model overfited the primary class. The literature suggests

solving that using a balanced metric like macro_recall [16]. Random Forest consistently

demonstrates good recall across various data configurations, with the best recall at “Code

Lines.”

Model \
Data
Config

Plain Size
Group

Code
Lines

Basic Clusters Full

Decision
Tree

83.06% 82.17% 84.97% 81.88% 79.91% 84.88%

Random
Forest

81.20% 78.83% 84.95% 79.36% 70.48% 78.78%

XGBoost 100% 100% 100% 100% 100% 26.40%

Bagging 76.78% 76.03% 82.25% 75.96% 73.80% 73.89%

Perceptro
n

46.78% 29.42% 0% 19.84% 72.40% 0%

Table 9. Recall score of the tested algorithms and data configurations.

Model \
Data
Config

Plain Size
Group

Code
Lines

Basic Clusters Full

Decision
Tree

02.33% 00.71% 00.83% 01.22% 03.56% 02.85%

Random
Forest

00.60% 00.74% 00.52% 00.66% 01.26% 01.28%

XGBoost 0% 0% 0% 0% 0% 3678%

Bagging 00.22% 00.63% 00.38% 00.35% 00.61% 00.48%

Perceptro
n

41.63% 36.07% 0% 00.98% 27.78% 0%

Table 10. Standard deviation of the tested algorithms and data configurations.
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Algorithm Parameters

Decision Tree 'classifier__criterion': 'entropy',
'classifier__max_depth': 10,

'classifier__min_samples_leaf': 18,
'classifier__min_samples_split': 6

Random Forest 'classifier__criterion': 'gini',
'classifier__max_depth': 9,

'classifier__min_samples_leaf': 13,
'classifier__min_samples_split': 18,

'classifier__n_estimators': 39

XGBoost 'classifier__colsample_bylevel': 0.84,
'classifier__colsample_bytree': 0.88,

'classifier__gamma': 8.53,
'classifier__learning_rate': 4.77,
'classifier__max_delta_step': 7,
'classifier__max_depth': 11,

'classifier__min_child_weight': 4.24,
'classifier__n_estimators': 51,
'classifier__reg_alpha': 9.45,
'classifier__reg_lambda': 0.49,

'classifier__scale_pos_weight': 0.02,
'classifier__subsample': 0.80

Bagging 'classifier__max_features': 0.19,
'classifier__max_samples': 0.51,
'classifier__n_estimators': 45,

'classifier__estimator__max_depth': 8

Perceptron 'classifier__learning_rate': 'adaptive',
'classifier__hidden_layer_sizes': (10, 10),

'classifier__alpha': 1e-05,
'classifier__activation': 'logistic'

Table 11. Optimal parameters of each algorithm that maximizes the recall metric.

4.5 F1 Score
Because the F1 score is the harmonic mean of precision and recall, we eliminate the

phenomenon of overfitting the major or minor class so that we will have a more

straightforward look at the best-performing model. XGBoost consistently achieves the highest

F1 scores across all data configurations, demonstrating its effectiveness in balancing precision

and recall. Decision Tree and Random Forest show competitive F1 scores, with Decision Tree

performing slightly better in most configurations. Bagging performs well, with F1 scores

close to Decision Tree and Random Forest. XGBoost exhibits relatively stable standard
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deviations, indicating a stable model. Again, Perceptron fails to model the data due to its

limited capacity.

Model \
Data
Config

Plain Size
Group

Code
Lines

Basic Clusters Full

Decision
Tree

72.03% 72.21% 77.85% 72.11% 70.95% 77.57%

Random
Forest

72.25% 71.91% 74.91% 72.08% 68.45% 72.55%

XGBoost 75.20% 75.32% 80.35% 75.32% 75.23% 80.15%

Bagging 71.94% 71.07% 77.27% 71.46% 71.15% 76.74%

Perceptro
n

34.61% 34.88% 0% 49.15% 44.78% 0%

Table 12. F1 score of the tested algorithms and data configurations.

Model \
Data
Config

Plain Size
Group

Code
Lines

Basic Clusters Full

Decision
Tree

00.60% 00.27% 00.20% 00.35% 01.12% 00.59%

Random
Forest

00.22% 00.16% 00.22% 00.19% 00.24% 00.26%

XGBoost 00.08% 00.08% 00.03% 00.12% 00.10% 00.18%

Bagging 00.19% 00.09% 00.17% 00.09% 00.21% 00.11%

Perceptro
n

28.59% 20.64% 0% 24.69% 14.42% 0

Table 13. Standard deviation of the tested algorithms and data configurations.

Algorithm Parameters

Decision Tree 'classifier__criterion': 'entropy',
'classifier__max_depth': 10,

'classifier__min_samples_leaf': 3,
'classifier__min_samples_split': 10

Random Forest 'classifier__criterion': 'gini',
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'classifier__max_depth': 9,
'classifier__min_samples_leaf': 5,
'classifier__min_samples_split': 13,

'classifier__n_estimators': 39

XGBoost 'classifier__colsample_bylevel': 0.79,
'classifier__colsample_bytree': 0.51,

'classifier__gamma': 9.88,
'classifier__learning_rate': 0.21,
'classifier__max_delta_step': 9,
'classifier__max_depth': 12,

'classifier__min_child_weight': 5.72,
'classifier__n_estimators': 51,
'classifier__reg_alpha': 3.16,
'classifier__reg_lambda': 3.93,

'classifier__scale_pos_weight': 2.38,
'classifier__subsample': 0.55

Bagging 'classifier__max_features': 0.64,
'classifier__max_samples': 0.73,
'classifier__n_estimators': 47,

'classifier__estimator__max_depth': 8

Perceptron 'classifier__learning_rate': 'constant',
'classifier__hidden_layer_sizes': (10,),

'classifier__alpha': 1e-05,
'classifier__activation': 'logistic'

Table 14. Optimal parameters of each algorithm that maximizes the f1 metric.

4.6 Area Under Curve Score
AUC can act as an unbiased metric between different classes, so those results give us another

unbiased view of which model is the best. XGBoost consistently achieves the highest AUC

scores across all data configurations, indicating its effectiveness in classification tasks.

Decision Tree, Random Forest, and Bagging show competitive AUC scores, with Decision

Tree performing slightly better in most configurations. Nevertheless, if the data are limited,

the Random Forest performs better than the Decision Tree classifier. Perceptron has lower

AUC scores across all configurations, suggesting challenges in distinguishing between

positive and negative instances. In addition, Perceptron has the highest standard deviations

among all algorithms, indicating significant variability in AUC performance across different

data configurations. XGBoost exhibits relatively lower standard deviations, indicating

consistent AUC performance across different data configurations.

Model \ Plain Size Code Basic Clusters Full
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Data
Config

Group Lines

Decision
Tree

77.11% 77.51% 85.43% 77.51% 76.81% 85.21%

Random
Forest

77.96% 78.55% 81.01% 78.53% 77.61% 79.36%

XGBoost 78.17% 78.68% 84.94% 78.82% 77.96% 85.15%

Bagging 78.12% 78.69% 85.84% 78.70% 78.27% 85.46%

Perceptron 62.89% 69.22% 50.05% 67.88% 68.22% 50.07%

Table 15. Area Under Curve score of the tested algorithms and data configurations.

Model \
Data
Config

Plain Size
Group

Code
Lines

Basic Clusters Full

Decision
Tree

00.27% 0.021% 00.13% 00.17% 00.44% 00.18%

Random
Forest

00.19% 00.16% 00.38% 00.15% 00.15% 00.27%

XGBoost 00.19% 00.08% 00.43% 00.19% 00.20% 00.35%

Bagging 00.18% 00.14% 00.14% 00.15% 00.23% 00.17%

Perceptro
n

06.72% 02.33% 06.72% 02.33% 00.09% 04.88%

Table 16. Standard deviation of the tested algorithms and data configurations.

Algorithm Parameters

Decision Tree 'classifier__criterion': 'entropy',
'classifier__max_depth': 9,

'classifier__min_samples_leaf': 8,
'classifier__min_samples_split': 11

Random Forest 'classifier__criterion': 'gini',
'classifier__max_depth': 8,

'classifier__min_samples_leaf': 1,
'classifier__min_samples_split': 14,

'classifier__n_estimators': 43
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XGBoost 'classifier__colsample_bylevel': 0.58,
'classifier__colsample_bytree': 0.86,

'classifier__gamma': 6.59,
'classifier__learning_rate': 0.14,
'classifier__max_delta_step': 6,
'classifier__max_depth': 7,

'classifier__min_child_weight': 2.695,
'classifier__n_estimators': 19,
'classifier__reg_alpha': 1.05,
'classifier__reg_lambda': 8.00,

'classifier__scale_pos_weight': 1.79,
'classifier__subsample': 0.83

Bagging 'classifier__max_features': 0.64,
'classifier__max_samples': 0.73,
'classifier__n_estimators': 47,

'classifier__estimator__max_depth': 8

Perceptron 'classifier__learning_rate': 'constant',
'classifier__hidden_layer_sizes': (50, 50, 50),

'classifier__alpha': 1e-06,
'classifier__activation': 'relu'

Table 17. Optimal parameters of each algorithm that maximizes the AUC metric.

4.7 Important Software Metrics
After examining the feature importance charts below, we conclude that the Halstead purity

ratio is the most important feature on the dataset, followed by nom_average and nest level.

The cognitive and cyclomatic metrics also play an essential role in various configurations. The

Nargs feature also impacts some cases where the size group is preset, which can positively

affect the decision if the size group is “large.” The feature kind impacts the models' decision if

it equals “unit.” The cluster features that had the most significant impact on the models'

decision were DBScan complex standard / min-max ID=1 and DBScan complex standard

ID=4. Lastly, when present, code lines overwhelm the model's capacity but provide helpful

information that significantly impacts the model's decision.

Dataset AUC F1
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Plain

Size Group

Code Lines
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Basic

Clusters

Full

Table 18. Feature Importance for XGBoost algorithm for all F1 and AUC metric and data

configurations.
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4.8 Model Explainability
While constructing the Decision Tree classifier model, we plotted the tree to inspect which

criteria the model used to classify the software component. For brevity, we plotted only for

the Plain and Full dataset optimized for the F1 score. In Figure 12, we observe that

halstead_purity_ratio is the core decisive factor, followed by nom_average, nest_level,

loc_lloc_min, and cyclomatic_min. We can verify those important features by referencing the

feature importance plots in the appendix. On the other hand, in Figure 13, the entire dataset is

utilized, and in this casecode_lines feature is dominant, followed by nexists_max,

nargs_average_functions, dbscan complex standard cluster-id 4. In the entire dataset, the tree

follows different patterns and features based on the code_lines of the project, and a code

module is present. In the left tree, DBScan complex standard cluster-id, halstead_n2_max,

and lox_sloc_average, while nexists_max and nargs_average_functions play an essential role

on the right side. Lastly, we observed that in the entire dataset, the model terminated early,

indicating that it had more information that made the model representation simpler.

Figure 12. Representation of Decision Tree for plain dataset configuration optimized for F1
metric first three layers.

Figure 13. Representation of Decision Tree for complete dataset configuration optimized for

F1 metric first three layers.
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5 Discussion

In the discussion chapter, we interpret the results, compare them with existing literature, and

explore the theoretical and practical implications of the research. Additionally, the chapter

addresses the study's limitations and suggests avenues for future research. The discussion

provides valuable insights into the performance of the proposed framework, the impact of

feature engineering, and the choice of machine learning models, offering a comprehensive

analysis of the study's findings and their significance.

5.1 Interpretation of Results
This section presents a detailed interpretation of our results and highlights insights and

observations. The first subsection discusses which software metrics to use and for what

situations. The first subsection presents the best overall performing classification algorithm.

The second subsection points out if our feature engineering efforts had any impact. The third

subsection highlights the importance of model explainability and gives insights into the

decision tree model explanation. The fourth subsection compares the Decision Tree and

Random Forest and observes why one performs better in some cases.

5.1.1 Best Performing Model
After thoroughly examining the extracted results, we concluded that the XGBoost optimized

for the F1 metric gives the best overall performance. Table 17 shows various classification

evaluation metrics of the model. Although the model is imperfect, and In Table 18, in the

confusion matrix, we can observe that it favors the classification of the main class (code

modules that had a bug-fix in the past), so further work is required to create a more

generalized model that is not biased.

Title Mean Standard Deviation (STD)

Accuracy 72.82% 00.45%

Balanced Accuracy 73.31% 00.43%

F1 77.42% 00.23%

F1 Macro 71.64% 00.55%

Precision 65.19% 00.47%
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Precision Macro 78.59% 00.14%

Recall 95.32% 00.34%

Recall Macro 73.31% 00.43%

AUC 85.15% 00.35%

Table 19. Classification metrics for the XGBoost algorithm on the Full dataset configuration

optimized for the F1 metric.

Figure 14. Confusion Matrix and Feature Importance figure for the XGBoost algorithm on

the Full dataset configuration optimized for the F1 metric.

5.1.2 Feature Engineering
In our research, we performed feature engineering to improve the models' performance, so we

created the following features from the initial data: has_spaces, max_depth, and spaces_len,

which we describe in detail in Section 3.2. In addition, from the raw data from Github, we

injected the code_lines and the size_group features into the code modules. Moreover, we used

clustering to cluster data and assigned clusters for everyone. The results show that the regular

features (has_spaces, max_depth, and spaces_len) had no impact. The clustering features

slightly impacted the performance, especially the cluster IDs extracted using the DBScan

algorithm. The clusters with ID=1 and ID=4 extracted using the DBScan method appear often

in our results, so modules included in those groups are considered complex. The feature

size_group was a decisive factor when referring to large code projects. That means there is

evidence that large projects have different patterns on which modules are complex. Lastly, the

code_lines feature had the most significant impact on the performance of the models, and the
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performance can increase between 1% and 8% in all metrics. Further research is required to

study the distribution of the tipping points where the models follow different patterns to

classify the code modules.

5.1.3 Model Explainability
During our research, we were curious why the models behave so, and model explainability

could solve that issue. We plotted the Decision Tree structure for various configurations, and

those plots gave us valuable information. One of those was which features were necessary,

and we confirmed that by comparing them with the feature importance plots. Moreover, those

plots are simple to understand by both developers and managers. Lastly, we can use those

models in tools like IDES to provide feedback to the developers on their code and act as a

guideline to improve quality.

5.1.4 Decision Tree vs. Random Forest
The results showed that the Random Forest sometimes falls behind the Decision Tree

classifier. We attribute this to the fact that Random Forest takes a subset of features each time

and constructs a tree based on those limited features a total number of estimators times. So, in

most cases, the Random Forest algorithm does not have the feature code_lines to use in

constructing the tree. In comparison, the Baggin algorithm has all the features and constructs

a different tree each time to cover uncertain areas. However, if we compare Random Forest

and Decision trees in the datasets that do not contain the code_lines feature, the Random

Forest classifiers consistently outperform the Decision Tree ones.

5.2 Comparison with Literature
Most of the works in the literature use existing datasets for popular languages like C and Java,

whereas we created our dataset using the proposed methodology [23], [25]. Regarding the

algorithms, we used a vast collection mostly met in other works, except for CNN and other

deep neural network techniques, that show promising results [25]. In the literature, some

works showed F1 = 75% while others AUC = 88%. Comparing those with our results, we

achieved similar performance F1 = 77% and AUC = 85%. Nevertheless, we must remember

that we constructed our dataset, and comparing them is not right, but it can act as a base

comparison that we are going in the right direction. Another difference we pointed out was

that we could not make SVM work in our dataset. At the same time, many papers in the

literature achieved that [25], [26].
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5.3 Theoretical and Practical Implications
Regarding the theoretical implications, we concluded that one can use a synthetic dataset of

software defects to train models that detect them. Further work is required to verify that this

has value to stakeholders like developers and managers. Relevant works were limited to

existing datasets that might need an update to meet current software trends. On the other

hand, regarding the practical implications, our work can be developed further by companies

and offered as a paid solution. Moreover, we showcased which software metrics impact the

quality of software components. Lastly, the explainability of why software components are

complex to maintain is an issue, so by using models like Decision Trees, we can justify the

reasons.

5.4 Limitations
Due to limited time and resource constraints, we limited our work to finish on time. One of

those limitations is the population size; on the GitHub website, over 30K projects are written

in Rust in the SEART database. To train the models with the current hardware and time, we

picked a smaller sample of 110 projects [27]. We made a custom sampling strategy by

separating the projects into three categories and picking the most active ones for each

category, aiming to represent as much of the population as possible [14]. However, during our

literature review, our choice of projects for the sample might hide open source and popularity

bias that might affect the results if run on closed-source scenarios or unpopular projects. In

addition, during the parameter optimization step in the methodology, we limited the iterations

of RandomizedSearchCV to 500. Lastly, another limitation we assumed was that the

appearance of bug-fixing commits determines code quality in a code module [13].

6 Future Work

In this chapter, we propose further work for the following research projects. Firstly, we

discuss advanced feature engineering methods and propose further research into using

Language Model Models (LLMs) for marking bug-fixed files. Secondly, we propose using a

larger sample size and more complex algorithms to determine if we can achieve better results.

Lastly, more applied research is required, and future work should survey stakeholders to see
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whether it brings value to their work. These future research directions aim to build upon the

current study's findings and improve the performance of the models.

6.1 Advanced Feature Engineering
In our experiments, we investigated if feature engineering could improve the performance of

the results. There is evidence that cluster features can improve the models' performances of

the models. However, the injection of the feature code_lines in the code modules showed

impressive improvement, overshadowing the other engineered features. Due to picking the

more straightforward feature engineering methods, there are more advanced ones in the

literature, like distance from clusters. We propose future work to research the bibliography,

include more advanced feature methodologies, and compare if they can further improve the

performance of the models [15], [16].

6.2 Use LLMs for Marking Bug-Fixed Files
In the work of Zafar et al., they propose a methodology for detecting if a git commit includes

a bug fix. Their work finetuned a BERT LLM to classify if the commit included a bug fix. It

performs better than ad-hoc regex or NLP analysis solutions because it can distinguish

between bug fixes on actual code and test code and changes on comments only in cases where

context can change the decision (e.g., refactoring changes) [24]. We propose a future work to

include the mentioned methodology for marking the bug-fixed files, then recalculate the

results and compare them with the current work to identify if it improves the performance of

the models.

6.3 Larger Sample
During our experiments, we tried a smaller sample and got poor results, so we are curious

about what will happen if we scale our sample size to include more repositories. In the

literature, there are references to the fact that the size of the dataset plays a vital role in the

performance of the trained models. We advise future work to include a larger sample and

study its effects on various classification algorithms[16].

6.4 Survey Stakeholders
Our research is primarily theoretical, and the evaluation is based on our definition of complex

code. We suggest more practical research to survey field experts and ask them to use a
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collection (Recall, Precision, F1) models and evaluate the results of the models. Then, use a

fuzzy algorithm to compare the experts' opinions and decide if the experts agree that the

models produce a meaningful result.

6.5 Complex Algorithms
Our work concluded that the Perceptron model performs poorly because of its limited

capacity and requires further parameter optimization. However, more complex Neural

Network architectures like CNN, Transformers, and others exist. We propose future research

to focus only on using more complex Neural Network architectures and explore how they

perform on the defined problem [15].

6.6 Explain Models in Depth
Our efforts to explain why the models behave the way they do barely scratch the surface, so

we suggest future research to study the characteristics of the DBScan clusters mentioned in

Subsection 5.1.3. Moreover, the distribution of the features for the different size_group

classes, but most importantly, to identify where various models have a tipping point for the

feature code_lines, collect them, and study the distribution of the features for each range [15],

[16].

Figure 15.We suggest finding where the models (e.g., Decision Tree) decide based on the

feature code_lines and studying the other features' distribution for each range.

6.7 Finetuning of Models
Because we wanted to test as many models as possible, we used RandomizedSearchCV to

stay within time constraints and not exhaustively test the whole parameter set space. There is
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a possibility of missing important parameters for each classification algorithm. We propose

that future researchers focus on the best-performing algorithm, XGBoost, and optimize it

further. In addition, we suggest taking time to understand and explain the importance of the

parameters' effect on the model's training and how sensitive a model is to a slight change in

the parameters. Lastly, we advise further research on why the Perceptron classifier performs

poorly and investigate our hypothesis due to the limited model capacity [15].

7 Conclusion

In this thesis, we proposed a framework for automatically marking complex Rust code using

software metrics. We aimed to evaluate the effectiveness of our proposed methodology in

detecting software defects and to explore the impact of different software metrics and

machine learning algorithms on the results. Our results showed promising performance in

detecting software defects, with F1 scores of 77% and AUC scores of 85%. We also identified

the software metrics that have the most significant impact on the quality of software

components and explored the effectiveness of different machine learning algorithms in

detecting software defects. However, our study also had limitations, such as the small sample

size and the limited number of algorithms used. Future research could explore more advanced

feature engineering techniques, larger sample sizes, and more complex algorithms to improve

the accuracy of the results. Overall, our proposed framework provides a valuable tool for

stakeholders in the software development industry to evaluate the quality of their code base

and optimize their development process. By automating the process of detecting software

defects, we can save resources and improve the efficiency of the development process. In

conclusion, returning to our initial Research Questions:

● RQ: Does our proposed automatic software quality evaluation framework produce

acceptable results?

The study results showed promising performance in detecting software defects, with

F1 scores of 77% and AUC scores of 85%. Therefore, we can consider the proposed

framework to produce an acceptable result

● RQ1: Which code metrics should we use?
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The study identified several software metrics that significantly impact the quality of

software components, but the most noticeable are the Halstead suite metrics,

code_lines, and cyclomatic complexity. Lastly, DBScan standard scaled cluster ID=1,

and ID=4 caught our interest because they appeared in many feature importance

graphs.

● RQ2: What subsets of data should we use?

The study used six different data configurations, each with a different combination of

features, to evaluate the impact of different data subsets on model performance. The

results showed that different data subsets can significantly impact model performance.

We advise using the Basic dataset with code_lines included as it provides the best

performance, but keep in mind to increase the capacity of the models so they can

comprehend and model the problem scape when the code_lines feature is present.

● RQ3: Which machine learning algorithms produce acceptable results?

The study evaluated several machine learning algorithms, including Decision Tree,

Random Forest, Perceptron, and XGBoost. The results showed that different

algorithms have varying levels of effectiveness in detecting software defects, with

XGBoost performing the best overall.

● RQ4: Which classification evaluation metrics should we use?

The study used several evaluation metrics, including accuracy, precision, recall, F1

score, and AUC, to evaluate the performance of the models. The results showed that

different metrics can provide different insights into model performance, and the most

appropriate metrics depend on the specific problem and context.

● RQ5: Could we use feature engineering techniques to improve the result?

Our results showed that the returns of performing feature engineering are diminishing,

suggesting that further research is required. However, we found that injecting the

code_lines of the project into the records or transforming them into size_group groups

brought significant results because the models followed different patterns for each

category. Lastly, the clustering efforts did not bring the expected results we had but

triggered our interest in studying two cluster groups that might contain meaningful

characteristics of complex code.
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Dataset
https://www.kaggle.com/datasets/karatakis/rust-code-software-metrics-vs-bug-fix-past

Accuracy Score Results
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Figure. Confusion Matrix and Feature Importance for Decision Tree algorithm for all data

configurations for the accuracy metric.

Random Forest Confusion Matrix Feature Importance
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Figure. Confusion Matrix and Feature Importance for Random Forest algorithm for all data

configurations for the accuracy metric.

XGBoost Confusion Matrix Feature Importance
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Figure. Confusion Matrix and Feature Importance for XGBoost algorithm for all data

configurations for the accuracy metric.

Bagging Confusion Matrix Feature Importance
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Figure. Confusion Matrix and Feature Importance for Bagging algorithm for all data

configurations for the accuracy metric.

Perceptron Confusion Matrix Feature Importance
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Figure. Confusion Matrix and Feature Importance for Perceptron algorithm for all data

configurations for the accuracy metric.

Precision Score Results
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Figure. Confusion Matrix and Feature Importance for Decision Tree algorithm for all data

configurations for the precision metric.

Random Forest Confusion Matrix Feature Importance

Plain

-71-



Size Group

Code Lines

Basic

-72-



Clusters

Full

Figure. Confusion Matrix and Feature Importance for Random Forest algorithm for all data

configurations for the precision metric.

XGBoost Confusion Matrix Feature Importance
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Figure. Confusion Matrix and Feature Importance for XGBoost algorithm for all data

configurations for the precision metric.

Bagging Confusion Matrix Feature Importance
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Figure. Confusion Matrix and Feature Importance for Bagging algorithm for all data

configurations for the precision metric.

Perceptron Confusion Matrix Feature Importance

Plain

-77-



Size Group

Code Lines

Basic

-78-



Clusters

Full

Figure. Confusion Matrix and Feature Importance for Perceptron algorithm for all data

configurations for the precision metric.

Recall Score Results
Decision Tree Confusion Matrix Feature Importance
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Figure. Confusion Matrix and Feature Importance for Decision Tree algorithm for all data.
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Figure. Confusion Matrix and Feature Importance for Random Forest algorithm for all data

configurations for the recall metric.
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Figure. Confusion Matrix and Feature Importance for XGBoost algorithm for all data

configurations for the recall metric.
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Figure. Confusion Matrix and Feature Importance for Bagging algorithm for all data

configurations for the recall metric.
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Figure. Confusion Matrix and Feature Importance for Perceptron algorithm for all data

configurations for the recall metric.
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F1 Score Results
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Figure. Confusion Matrix and Feature Importance for Decision Tree algorithm for all data

configurations for the F1 metric.
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Figure. Confusion Matrix and Feature Importance for Random Forest algorithm for all data

configurations for the F1 metric.
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Figure. Confusion Matrix and Feature Importance for XGBoost algorithm for all data

configurations for the F1 metric.
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Figure. Confusion Matrix and Feature Importance for Bagging algorithm for all data

configurations for the F1 metric.
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Figure. Confusion Matrix and Feature Importance for Perceptron algorithm for all data

configurations for the F1 metric.
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Area Under Curve Score Results
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Figure. Confusion Matrix and Feature Importance for Decision Tree algorithm for all data

configurations for the AUC metric.
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Figure. Confusion Matrix and Feature Importance for Random Forest algorithm for all data

configurations for the AUC metric.

XGBoost Confusion Matrix Feature Importance

-103-



Plain

Size Group

Code Lines

-104-



Basic

Clusters

Full

Figure. Confusion Matrix and Feature Importance for XGBoost algorithm for all data

configurations for the AUC metric.
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Figure. Confusion Matrix and Feature Importance for Bagging algorithm for all data

configurations for the AUC metric.
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